If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-19x-12=0
a = 5; b = -19; c = -12;
Δ = b2-4ac
Δ = -192-4·5·(-12)
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{601}}{2*5}=\frac{19-\sqrt{601}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{601}}{2*5}=\frac{19+\sqrt{601}}{10} $
| 4d+5.25=45.2 | | 5(2x-10)=90 | | 5x2+10x−9=3x−3 | | -72s-48=-48 | | 0.05x+0.09(1000+x)=750 | | x+8+4x+10-3x-8+11x=118 | | p/3-7=-7 | | F(x)=x2+2x+1 | | 50+-10t=80 | | 35x+3=10-5x | | 35x+3=10-5× | | 25=3x-27 | | x^2=−7x+8 | | 3a=15=-9 | | 17=n-10 | | 15-8x=-79 | | 12-2x=56 | | -11x+3=36 | | 11+(8+6)=(y+8)+6 | | 2.25=r*2 | | -37=8f+139 | | w+40=-26 | | -37=8f+39 | | a+2a=93 | | 16+0.9x=9+0.13x | | 28=15+x | | 93-x=2 | | 0.019+0.05(22-p)=0.54 | | 32/8(4+4)=x | | 10x-2x+2x+29=180 | | (x/8)+(x/16)=1 | | 10x-22=2x+29 |